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I. Nonlinear systems

Let f : Rk → Rk, suppose that we want to solve the nonlinear system f(x) = 0. We

begin with the bisection algorithm. If k = 1 and f is continuous over the interval [a, b],

and f(a), f(b) alternate the sign. Then, by the intermediate value theorem f must have

at least one zero in x ∈ [a, b]. The bisection method start from an interval [x, x̄] with

f(x) < 0, f(x̄) > 0 and then evaluate f at the midpoint xn = (x + x̄)/2, if f(xn) = 0 we

are done, if f(xn) < 0 set x = xn and compute again the midpoint of this interval xn+1, if

f(xn) > 0 set x̄ = xn and compute the midpoint xn+1. We can stop when |xn − xn+1| < ϵ

for ϵ ≈ 0 or f(xn+1) ≤ δ for δ ≈ 0. This procedure constructs successive smaller intervals

containing a zero of f .

The Newton-Raphson method finds the roots of a nonlinear function using a sequence

of linear approximations. We start by linearly approximating the function in a point xn.

The root of this line yields a new guess xn+1. Convergence to the solution is guaranteed

as long as the function is globally convex or globally concave. Suppose that k = 1, f(x)

is at least once differentiable. Solving f(xn) + (xn+1 − xn)f
′(xn) = 0 for xn+1 yields

xn+1 = xn −
f(xn)

f ′(xn)
.

From an initial guess xn we can iterate until convergence, i.e. |xn+1−xn| < ϵ, for ϵ small.

In general, f : Rk → Rk the iteration scheme in matrix notation becomes

xn+1 = xn − Jf (xn)
−1f(xn).

This requires to invert the Jacobian Jf (xn). When the Jacobian is computationally too

demanding or ill-conditioned, there are alternative methods, called Quasi-Newton meth-

ods, that simplify its computation and provide approximations to it.

Given a transformation g : Rk → Rk we can rewrite root finding problems f(x) =

x − g(x) = 0 as fixed-point problems x = g(x). This suggests the iteration xn+1 =

θxn + (1− θ)g(xn) until |xn+1 − xn| < ϵ. The parameter θ ∈ [0, 1] determines the size of

each step affecting the speed and convergence of the algorithm.

The bisection method always converges but it is often slow. The Quasi-Newton algo-

rithms tend to be faster but the convergence is not guaranteed. If a function is flat around

the zero, e.g. x6, loose stopping rules can lead to convergence far from the true zero. Flat

regions might also cause ill-conditioned matrices. Moreover, with irregular functions the
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solution can be very sensitive to starting values due to the presence of multiple roots, and

there are cases in which these methods produce cycles. Other pitfalls are related to round-

ing errors and scale problems. Fixed point schemes also do not guarantee convergence

with the exception of existence results for the fixed points of contraction mappings.

II. Heterogeneous Agents and Distributions

Consider an intertemporal consumption problem where at denotes asset. Let wt be the

real wage and nt labor supply. Households supply labor inelastically, i.e. nt = 1 and

labor income wtet is subject to an idiosyncratic risk et. The state space is X = (A,E).

We assume that et follows a two-state discrete Markov process. However, the code can be

easily extended to allow for a J > 2 state Markov process. Since we assume incomplete

markets the asset is not state-contingent. Given prices and states households solve

v(a, e) = max
c,a′

u(c) + β

∫
E

v(a′, e′)dPe′|e(e
′|e), (1)

s.t. c+ a′ = (1 + rt)a+ wte,

a′ ≥ −ϕ

Formally, at+1 = gat (at, et) is the policy function of assets and et : (Ω,F , P ) → (E, E)
where E = {el, eh} ⊂ R+ with conditional probability distribution Pe′|e(.|e = ei) : E →
[0, 1]. Thus, the transition function Qt : (X,X ) → [0, 1] of {at, et} evaluated at (a′, e′) is

Qt((a, e), (a
′, e′)) = 1[gat (a,e)=a′]Pe′|e(e

′|e). (2)

Intuitively, Q gives the probability of future states for someone with current states (a, e).

The function Q induces a sequence of distributions or probability measures Dt :

Dt+1(a
′, e′) =

∫
X

Qt((a, e), (a
′, e′))dDt(a, e). (3)

Let M be the set of probability measures on (X,X ). It is convenient to use an implicit

form for the previous law of motion Ht : M → M ,

Dt+1 = Ht(Dt).

There is a continuum H = [0, 1] of ex-ante identical agents subject to idiosyncratic labor

income shocks. Hence, the joint probability distribution Dt(at, et) gives us the cross-

sectional distribution of assets and income risk in period t. To begin with, we consider

the steady state of the model taking the prices w and r as given. In Section III. we

consider the case in which prices are determined endogenously in general equilibrium and

show how to compute the transition dynamics of the model.
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A. The Endogenous Grid Method

To solve the household optimization problem we can use Value Function Iteration (VFI).

However, the endogenous grid method provides a more efficient alternative. As in the case

of discrete VFI, we discretize the state space A using a grid GA of points in A. However,

rather than using a grid GA ∈ A over a we use a grid GA ∈ A over a′. This allows us

to solve the Euler equation analytically. As a result, this substantially speeds up the

computations because we can avoid the inner loop that solves the Euler equation or the

maximization in the Bellman equation numerically. We set w = 1 so that y = e. The

algorithm is the following:

1. Fix a grid over assets GA = {a1, ..., aI} and income shocks GY = Y = {y1, ..., yJ}.

2. Guess a decision rule cn(ai, yj), e.g. a
′
n(ai, yj) = 0, cn(ai, yj) = (1 + r)ai + yj.

3. For any pair (ai, yj) ∈ GA ×GY compute the right-hand-side of the Euler equation

RHSij = β(1 + r)
J∑

j′=1

P (yj′ |yj)u′(cn(a
′
i, yj′)).

4. Compute c(a′i, yj) = (u′)−1(RHSij) and a(a′i, yj) = (1 + r)−1(c(a′i, yj) + a′i − yj).

5. For each j invert the mapping a to go from (a′i, a(a
′
i)) to (a(a′i), a

′
i).

6. For each j interpolate (a(a′i), a
′
i) over ai ∈ GA to get a′n+1(ai, yj) and (a(a′i), c(a

′
i, yj))

over ai ∈ GA to get cn+1(ai, yj).

7. If ai < a(a′1, yj) the agent will be constrained in the next period and we cannot use

the Euler equation. Hence, set a′n+1 = a1 and cn+1(ai, yj) = (1 + r)ai + yj − a1.

8. Iterate from step 3 until convergence maxij |cn+1 − cn| < ε.

Note that a(a′i, yj) are the assets today that will lead the consumer to have a′i assets

tomorrow given the shock today yj. This function is not necessarily on the grid GA and

is an endogenous asset grid that changes in each iteration. In step 6 we want to move the

optimal decisions from the endogenous grid to the exogenous grid GA, if needed we can

always extrapolate. The algorithm can be extended to include a labor supply decision and

finite horizon to solve life-cycle models. Note, that one can also apply this method with

minimum modifications to solve the first-order conditions of the recursive formulation

of the household optimization problem instead of the Euler equation of the sequential

household problem as we did.
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B. Stationary distribution

Once we have the policy functions we can check that ga intersects the 45-degree line for

a large enough to rule out explosive wealth dynamics. We can always adjust the upper

bound of the grid aI to make sure that we are covering the relevant section of the state

space A. Then, we can compute the stationary distribution. First, we compute the

transition probabilities given by Q from pairs (a, e) to pairs (a′, e′). Since we discretized

the state space we are working on a grid GA ×GE and we can collect these probabilities

in a IJ × IJ matrix A. Note here that the asset policy function a′ = ga(a, e) will take

us off the grid in the next period. We can use a linear interpolation. In particular, we

assume that households go to the two nearest grid points so that on average households

choose the right asset value. To do so we solve pai + (1 − p)ai+1 = a′ for p. Second, we

solve the discrete Chapman-Kolmogorov equation, i.e. Dt+1 = A′Dt where Dt is a IJ × 1

vector. There are three equivalent ways to do so. Since in the steady state D = H(D)

we can use a fixed point iteration scheme

Dn+1 = A′Dn,

and iterate until convergence |Dn+1 −Dn| < ε. We can use the eigenvalue problem

A′D = λD,

the eigenvector associated to the eigenvalue λ = 1 is the stationary distributionD. We can

solve this easily as it is very likely that the programming language you are using already

has routines for it. We should rescale D to make sure that it adds up to 1. Alternatively,

simulate a large number of households say 10,000 initialize each individual at (a0, e0) and

use ga and a random number generator to replicate the Markov process {et} and generate

the joint Markov process {at, et}. In each period compute a set of cross-sectional moments

mt for the distribution of assets like mean, variance, and quantiles. When mt ≈ mt+1 we

can stop. In this case, the distribution has converged.

Once we have the policy functions and the stationary distribution we have solved the

heterogeneous agent model and we can compute aggregate consumption and wealth

A =
∑
(a,e)

ga(a, e)D(a, e),

C =
∑
(a,e)

gc(a, e)D(a, e),

As well as marginal distributions Da(at) and De(et), Gini coefficients, correlations, and

expectation functions such as Ex
h(a, e) = E[x(at+h, et+h)|a0 = a, e0 = e].
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III. The Workhorse Heterogeneous Agent (HA) model

A. Description of the model

In this section we study the canonical heterogeneous-agent model with capital and no

aggregate risk (Aiyagari (1994), Imrohoroglu (1992), Huggett (1993), Krusell and Smith

(1998)). Given prices and states households solve the same consumption problem as before

v(a, e) = max
c,a′

u(c) + β

∫
E

v(a′, e′)dPe′|e(e
′|e), (4)

s.t. c+ a′ = (1 + rt)a+ wte, (5)

a′ ≥ −ϕ

The law of motion of the distribution of idiosyncratic states Dt is given by

Dt+1(a
′, e′) =

∫
X

Qt((a, e), (a
′, e′))dDt(a, e). (6)

Firms operate in a competitive sector and produce the final consumption good using

labor inputs Lt and capital Kt. Marginal pricing implied by profit maximization yields

Yt = Kα
t L

1−α
t , (7)

rt + δ = αKα−1
t L1−α

t , (8)

wt = (1− α)L−α
t Kα

t . (9)

In each period labor and asset markets clear:

Lt =

∫
X

etdDt(at, et) =
∑
et∈E

∫ ∞

0

etft(at, et)dat, (10)

Kt =

∫
X

atdDt(at, et) =
∑
et∈E

∫ ∞

0

atft(at, et)dat, (11)

where ft(at, et) is the probability function of at, et associated to Dt. This is a mixed

probability function as one random variable is discrete et and the other at is continuous.

Since labor is supplied inelastically labor supply is exogenous. The resource constraint is

Ct +Kt+1 = Yt + (1− δ)Kt,

where aggregate consumption is given by

Ct =

∫
X

ct(at, ee)dD(at, et).
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B. Stationary equilibrium

In equilibrium households decide {ct, at} solving (4), (5) given prices {wt, rt} and initial

conditions a0, e0, firms demand {Kt, Lt} and produce {Yt} according to (7), (8), (9) given

prices {wt, rt}, {Dt} follows the law of motion (6), and prices {wt, rt} are such that

markets (10), (11) clear. This is a nonlinear dynamic system with 8 equations and 8

endogenous variables.

In the presence of idiosyncratic risk, we need β(1 + r) < 1 else there is no stationary

equilibrium as the sequence of consumption and assets are unbounded. This result has

an intuitive economic interpretation: the presence of idiosyncratic income risk implies a

precautionary saving motive leading to more capital accumulation and a lower equilibrium

rate than under the complete markets benchmark β(1 + rcm) = 1.

Example. Figure 1 shows the consumption and saving policy functions of the canoni-

cal HA model where et follows a two-state Markov process. The consumption function is

concave around the borrowing limit ϕ, in this example ϕ = 0. One important statistic in

this class of models is the Marginal Propensity to Consume (MPC), that is the fraction

of a windfall income or wealth gain that is consumed within a given period. This statis-

tic summarizes how responsive is households’ expenditure to temporary income changes.

The concavity of the consumption function implies a high MPC for constrained agents

and low-wealth unconstrained agents close to the borrowing limit (see Chapter 3 for more

details on this point). On the other hand, wealthy households are well insured against

income shocks and the consumption function is linear in this region of the state space.
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Figure 1: Consumption and saving policy functions.

The saving policy function s(a, e) := a′(a, e) − a shows that households with a low

income realization reduce their wealth s(a, e) < 0 while households with a high income
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realization accumulate wealth s(a, e) > 0 until they reach their saving target a∗ : s(a∗, e) =

0. This saving function implies that the support of the wealth distribution is bounded.

Alternatively, one could represent saving as a stock a′ and use a phase diagram (a′, a) to

make the same point.

C. Solving the model using the sequence space Jacobian

We solve the model in sequence space as in Auclert, Bardóczy, Rognlie, and Straub (2021).

In particular, we need to solve a dynamic system of nonlinear equations in sequence space

given by

M(X,Z) = 0,

where X is a sequence of endogenous variables and Z is the time path of the exogenous

variables. Often we can reduce this problem to a few unknown sequences U such that

H(U,Z) = 0,

in this case, once we obtain the unknowns we can recover other structural variables using

the equations of the model, namely X = F (U,Z). To solve the model globally we can

use a Quasi-Newton algorithm. Take a linear approximation of the model H(U,Z) = 0

at an initial point (Un, Z) this yields H(Un, Z) + HU(U
n, Z)(U − Un) = 0. Replacing

HU(U
n, Z) with HU(Use, Zse) and solving for Un+1 := U yields

Un+1 = Un −HU(Use, Zse)
−1H(Un, Z).

Alternatively, we can take only one linear approximation of the model around the steady

state (Use, Zse) for a local solution. At the steady state H(Use, Zse) = 0. Totally differen-

tiating yields HU(Use, Zse)dU +HZ(Use, Zse)dZ = 0. Rearranging terms yields

dU = −HU(Use, Zse)
−1HZ(Use, Zse)dZ.

In both cases we need the Jacobian matrix HU(Use, Zse). In discrete time with T

periods and n unknowns this is a nT × nT matrix.

To compute the model Jacobian HU(Use, Zse) we divide the model into blocks. Each

block is a set of m input variables, o output variables and structural equations. We order

the blocks using a Directed Acyclical Graph (DAG). The graph should have as many out-

puts or targets H as inputs U . Moreover, you cannot have cycles in the graph: U cannot

be the output of any intermediate block and H cannot be the input of any intermediate

block. Note that there might be many DAG representations of a given model. All DAGs

of a model deliver the same solution, finding an efficient DAG becomes easier with prac-

tice. Then, we obtain HU by forward accumulation of the partial Jacobians along the

DAG.

7



Example. Consider the canonical HA model with a TFP shock Yt = ZtK
α
t L

1−α
t where

Zt follows an AR(1) process and Z = 1 at the steady state. Let Ct({wt, rt}), At({wt, rt})
denote respectively aggregate consumption and aggregate household wealth from the het-

erogeneous agent block of the model. To solve the model we use the following DAG.

Firm HA

Asset mkt

w, r

K,L,Z

K,L,Z A

K

Figure 2: Computations of the standard Heterogeneous Agent model

Each node in Figure 2 is a block of the model. Note that labor supply is exogenous

and given by Lt =
∑

e etfe(et) where fe is the marginal probability function of the income

risk process. So, we have one unknown sequence {Kt} and one target given by the

market clearing condition Kt = At,∀t = 0, 1, 2, ..., T where T is a truncation horizon.

T must be large enough that the economy is back at the steady state. We compute

the Jacobian HK(Kse, Zse) using the partial Jacobian of each block and the chain rule

to forward accumulate these matrices as follows. In the first block we use Equations

(7), (8), (9) to obtain the block’s output variables w, r given the block’s inputs K,L, Z.

Specifically, in this block we compute the T ×T partial Jacobians J w,K ,J w,Z ,J r,K ,J r,Z .

Each column s of these matrices is the response of an output variable to a one-time shock

of size h = 0.0001 to an input variable while keeping the other inputs at the steady state,

e.g. J w,K
t,s := (wt − w)/h is the partial response of real wages when aggregate capital is

increased above the steady state level by h at time s while keeping the other inputs at the

steady state level. In the second block we compute again the partial jacobians JA,r, JA,w

as before. Then, we compute the total Jacobians J with respect to the initial inputs,

i.e. the unknowns and the shocks, using the chain rule JA,K = J A,rJr,K +J A,wJw,K and

JA,Z = J A,rJr,Z + J A,wJw,Z . Note that partial derivatives J and total derivatives J

are the same in the first block of the model. Moreover, J K,K = JK,K = IT where IT is

the T × T identity matrix. Finally, in the last block we proceed as before and compute

J H,K ,J H,A and HK := JH,K = J H,AJA,K + J H,K and HZ := JH,Z = J H,AJA,Z . These

computations can be easily automatized. However, for the basic model it is instructive to

build the Jacobian HU “by hand”.
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Note that to compute the Jacobian HU and solve the model. We need to solve the

heterogeneous agent block of the model over time. To this end, we solve the household

problem backward in time starting at t = T from a guess of the policy functions in

cT = c, aT = a′. Then, we solve the distribution forward in time starting at t = 0 from

the steady state distribution D0 = D. This implies that to compute each column of the

Jacobians we need to iterate twice over the time dimension. Usually, T = 300 so this

is a bottleneck for the numerical solution. One could speed up the algorithm using one

single backward iteration for each Jacobian exploiting the fact that the policy functions

are purely forward-looking.

D. Productivity shocks

Figures 3 plot the dynamics of the model after an unexpected 1% increase in productivity

Zt with autoregressive coefficient ρz = 0.8. This is a local solution around the steady

state of the model. The TFP shock increases output and the factor prices stimulating

aggregate consumption and firms’ demand for labor and capital. Higher real interest rates

provide an incentive for saving while higher real wages increase consumption of high-MPC

households. Over time the productivity shocks fade away and capital depreciates. This

generates a hump-shaped response of households’ assets and aggregate consumption.
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Figure 3: Impulse response functions to an increase in productivity

Note: The response of the variables are in percentage deviations from the steady state. The response of
the real rate is in percentage points.
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